Sunshine Recorder

Link: The Mental Life of Plants and Worms, Among Others

We all distinguish between plants and animals. We understand that plants, in general, are immobile, rooted in the ground; they spread their green leaves to the heavens and feed on sunlight and soil. We understand that animals, in contrast, are mobile, moving from place to place, foraging or hunting for food; they have easily recognized behaviors of various sorts. Plants and animals have evolved along two profoundly different paths (fungi have yet another), and they are wholly different in their forms and modes of life. And yet, Darwin insisted, they were closer than one might think.

Charles Darwin’s last book, published in 1881, was a study of the humble earthworm. His main theme—expressed in the title, The Formation of Vegetable Mould through the Action of Worms—was the immense power of worms, in vast numbers and over millions of years, to till the soil and change the face of the earth. But his opening chapters are devoted more simply to the “habits” of worms.

Worms can distinguish between light and dark, and they generally stay underground, safe from predators, during daylight hours. They have no ears, but if they are deaf to aerial vibration, they are exceedingly sensitive to vibrations conducted through the earth, as might be generated by the footsteps of approaching animals. All of these sensations, Darwin noted, are transmitted to collections of nerve cells (he called them “the cerebral ganglia”) in the worm’s head.

“When a worm is suddenly illuminated,” Darwin wrote, it “dashes like a rabbit into its burrow.” He noted that he was “at first led to look at the action as a reflex one,” but then observed that this behavior could be modified—for instance, when a worm was otherwise engaged, it showed no withdrawal with sudden exposure to light.

For Darwin, the ability to modulate responses indicated “the presence of a mind of some kind.” He also wrote of the “mental qualities” of worms in relation to their plugging up their burrows, noting that “if worms are able to judge…having drawn an object close to the mouths of their burrows, how best to drag it in, they must acquire some notion of its general shape.” This moved him to argue that worms “deserve to be called intelligent, for they then act in nearly the same manner as a man under similar circumstances.”

As a boy, I played with the earthworms in our garden (and later used them in research projects), but my true love was for the seashore, and especially tidal pools, for we nearly always took our summer holidays at the seaside. This early, lyrical feeling for the beauty of simple sea creatures became more scientific under the influence of a biology teacher at school and our annual visits with him to the Marine Station at Millport in southwest Scotland, where we could investigate the immense range of invertebrate animals on the seashores of Cumbrae. I was so excited by these Millport visits that I thought I would like to become a marine biologist myself.

If Darwin’s book on earthworms was a favorite of mine, so too was George John Romanes’s 1885 book Jelly-Fish, Star-Fish, and Sea-Urchins: Being a Research on Primitive Nervous Systems, with its simple, fascinating experiments and beautiful illustrations. For Romanes, Darwin’s young friend and student, the seashore and its fauna were to be passionate and lifelong interests, and his aim above all was to investigate what he regarded as the behavioral manifestations of “mind” in these creatures.

I was charmed by Romanes’s personal style. (His studies of invertebrate minds and nervous systems were most happily pursued, he wrote, in “a laboratory set up upon the sea-beach…a neat little wooden workshop thrown open to the sea-breezes.”) But it was clear that correlating the neural and the behavioral was at the heart of Romanes’s enterprise. He spoke of his work as “comparative psychology,” and saw it as analogous to comparative anatomy.

Louis Agassiz had shown, as early as 1850, that the jellyfish Bougainvillea had a substantial nervous system, and by 1883 Romanes demonstrated its individual nerve cells (there are about a thousand). By simple experiments—cutting certain nerves, making incisions in the bell, or looking at isolated slices of tissue—he showed that jellyfish employed both autonomous, local mechanisms (dependent on nerve “nets”) and centrally coordinated activities through the circular “brain” that ran along the margins of the bell.

By 1883, Romanes was able to include drawings of individual nerve cells and clusters of nerve cells, or ganglia, in his book Mental Evolution in Animals. “Throughout the animal kingdom,” Romanes wrote,

nerve tissue is invariably present in all species whose zoological position is not below that of the Hydrozoa. The lowest animals in which it has hitherto been detected are the Medusae, or jelly-fishes, and from them upwards its occurrence is, as I have said, invariable. Wherever it does occur its fundamental structure is very much the same, so that whether we meet with nerve-tissue in a jelly-fish, an oyster, an insect, a bird, or a man, we have no difficulty in recognizing its structural units as everywhere more or less similar.

At the same time that Romanes was vivisecting jellyfish and starfish in his seaside laboratory, the young Sigmund Freud, already a passionate Darwinian, was working in the lab of Ernst Brücke, a physiologist in Vienna. His special concern was to compare the nerve cells of vertebrates and invertebrates, in particular those of a very primitive vertebrate (Petromyzon, a lamprey) with those of an invertebrate (a crayfish). While it was widely held at the time that the nerve elements in invertebrate nervous systems were radically different from those of vertebrate ones, Freud was able to show and illustrate, in meticulous, beautiful drawings, that the nerve cells in crayfish were basically similar to those of lampreys—or human beings.

And he grasped, as no one had before, that the nerve cell body and its processes—dendrites and axons—constituted the basic building blocks and the signaling units of the nervous system. Eric Kandel, in his book In Search of Memory: The Emergence of a New Science of Mind (2006), speculates that if Freud had stayed in basic research instead of going into medicine, perhaps he would be known today as “a co-founder of the neuron doctrine, instead of as the father of psychoanalysis.”

Although neurons may differ in shape and size, they are essentially the same from the most primitive animal life to the most advanced. It is their number and organization that differ: we have a hundred billion nerve cells, while a jellyfish has a thousand. But their status as cells capable of rapid and repetitive firingis essentially the same.

The crucial role of synapses—the junctions between neurons where nerve impulses can be modulated, giving organisms flexibility and a whole range of behaviors—was clarified only at the close of the nineteenth century by the great Spanish anatomist Santiago Ramón y Cajal, who looked at the nervous systems of many vertebrates and invertebrates, and by C.S. Sherrington in England (it was Sherrington who coined the word “synapse” and showed that synapses could be excitatory or inhibitory in function).

In the 1880s, however, despite Agassiz’s and Romanes’s work, there was still a general feeling that jellyfish were little more than passively floating masses of tentacles ready to sting and ingest whatever came their way, little more than a sort of floating marine sundew.

But jellyfish are hardly passive. They pulsate rhythmically, contracting every part of their bell simultaneously, and this requires a central pacemaker system that sets off each pulse. Jellyfish can change direction and depth, and many have a “fishing” behavior that involves turning upside down for a minute, spreading their tentacles like a net, and then righting themselves, which they do by virtue of eight gravity-sensing balance organs. (If these are removed, the jellyfish is disoriented and can no longer control its position in the water.) If bitten by a fish, or otherwise threatened, jellyfish have an escape strategy—a series of rapid, powerful pulsations of the bell—that shoots them out of harm’s way; special, oversized (and therefore rapidly responding) neurons are activated at such times.

Of special interest and infamous reputation among divers is the box jellyfish (Cubomedusae)—one of the most primitive animals to have fully developed image-forming eyes, not so different from our own. The biologist Tim Flannery, in an article in these pages, writes of box jellyfish:

They are active hunters of medium-sized fish and crustaceans, and can move at up to twenty-one feet per minute. They are also the only jellyfish with eyes that are quite sophisticated, containing retinas, corneas, and lenses. And they have brains, which are capable of learning, memory, and guiding complex behaviors.1

We and all higher animals are bilaterally symmetrical, have a front end (a head) containing a brain, and a preferred direction of movement (forward). The jellyfish nervous system, like the animal itself, is radially symmetrical and may seem less sophisticated than a mammalian brain, but it has every right to be considered a brain, generating, as it does, complex adaptive behaviors and coordinating all the animal’s sensory and motor mechanisms. Whether we can speak of a “mind” here (as Darwin does in regard to earthworms) depends on how one defines “mind.”

We all distinguish between plants and animals. We understand that plants, in general, are immobile, rooted in the ground; they spread their green leaves to the heavens and feed on sunlight and soil. We understand that animals, in contrast, are mobile, moving from place to place, foraging or hunting for food; they have easily recognized behaviors of various sorts. Plants and animals have evolved along two profoundly different paths (fungi have yet another), and they are wholly different in their forms and modes of life.

And yet, Darwin insisted, they were closer than one might think. He wrote a series of botanical books, culminating in The Power of Movement in Plants (1880), just before his book on earthworms. He thought the powers of movement, and especially of detecting and catching prey, in the insectivorous plants so remarkable that, in a letter to the botanist Asa Gray, he referred to Drosera, the sundew, only half-jokingly as not only a wonderful plant but “a most sagacious animal.”

Darwin was reinforced in this notion by the demonstration that insect-eating plants made use of electrical currents to move, just as animals did—that there was “plant electricity” as well as “animal electricity.” But “plant electricity” moves slowly, roughly an inch a second, as one can see by watching the leaflets of the sensitive plant (Mimosa pudica) closing one by one along a leaf that is touched. “Animal electricity,” conducted by nerves, moves roughly a thousand times faster.2

Signaling between cells depends on electrochemical changes, the flow of electrically charged atoms (ions), in and out of cells via special, highly selective molecular pores or “channels.” These ion flows cause electrical currents, impulses—action potentials—that are transmitted (directly or indirectly) from one cell to another, in both plants and animals.

Plants depend largely on calcium ion channels, which suit their relatively slow lives perfectly. As Daniel Chamovitz argues in his book What a Plant Knows (2012), plants are capable of registering what we would call sights, sounds, tactile signals, and much more. Plants know what to do, and they “remember.” But without neurons, plants do not learn in the same way that animals do; instead they rely on a vast arsenal of different chemicals and what Darwin termed “devices.” The blueprints for these must all be encoded in the plant’s genome, and indeed plant genomes are often larger than our own.

The calcium ion channels that plants rely on do not support rapid or repetitive signaling between cells; once a plant action potential is generated, it cannot be repeated at a fast enough rate to allow, for example, the speed with which a worm “dashes…into its burrow.” Speed requires ions and ion channels that can open and close in a matter of milliseconds, allowing hundreds of action potentials to be generated in a second. The magic ions, here, are sodium and potassium ions, which enabled the development of rapidly reacting muscle cells, nerve cells, and neuromodulation at synapses. These made possible organisms that could learn, profit by experience, judge, act, and finally think.

This new form of life—animal life—emerging perhaps 600 million years ago conferred great advantages, and transformed populations rapidly. In the so-called Cambrian explosion (datable with remarkable precision to 542 million years ago), a dozen or more new phyla, each with very different body plans, arose within the space of a million years or less—a geological eye-blink. The once peaceful pre-Cambrian seas were transformed into a jungle of hunters and hunted, newly mobile. And while some animals (like sponges) lost their nerve cells and regressed to a vegetative life, others, especially predators, evolved increasingly sophisticated sense organs, memories, and minds.

Link: They’re Taking Over!

Stung! On Jellyfish Blooms and the Future of the Ocean by Lisa-ann Gershwin, with a foreword by Sylvia Earle. University of Chicago Press, 424 pp., $27.50

It’s become fashionable to keep jellyfish in aquariums. Behind glass they can be hypnotically beautiful and immensely relaxing to watch. Unless we are enjoying them in this way, we usually give little thought to the creatures until we are stung by one. Jellyfish stings are often not much more than a painful interlude in a seaside holiday—unless you happen to live in northern Australia. There, you might be stung by the most venomous creature on Earth: the box jellyfish, Chironex fleckeri.

Box jellyfish have bells (the disc-shaped “head”) around a foot across, behind which trail up to 550 feet of tentacles. It’s the tentacles that contain the stinging cells, and if just six yards of tentacle contact your skin, you have, on average, four minutes to live—though you might die in just two. Seventy-six fatalities have been recorded in Australia since 1884, and many more may have gone misdiagnosed or unreported.

In 2000 a somewhat less venomous species of box jellyfish, which lives further south, threatened the Sydney Olympics. It began swarming at the exact location scheduled for the aquatic leg of the triathlon events. The Olympic Committee considered many options, including literally sweeping the course free of the menace, but all were deemed impractical. Then, around a week before the opening ceremony, the jellyfish vanished as mysteriously as they had appeared.

Most jellyfish are little more than gelatinous bags containing digestive organs and gonads, drifting at the whim of the current. But box jellyfish are different. They are active hunters of medium-sized fish and crustaceans, and can move at up to twenty-one feet per minute. They are also the only jellyfish with eyes that are quite sophisticated, containing retinas, corneas, and lenses. And they have brains, which are capable of learning, memory, and guiding complex behaviors.

The Irukandjis are diminutive relatives of the box jellies. First described in 1967, most of the dozen known species are peanut- to thumb-sized. The name comes from a North Queensland Aboriginal language, the speakers of which have known for millennia how deadly these minuscule beings can be. Europeans first learned of them in 1964 when Dr. Jack Barnes, who was trying to track down the origin of symptoms suffered by swimmers in Queensland, allowed himself to be stung by one. With nobody attending but a lifeguard and his fourteen-year-old son, he was lucky to survive.

It’s now known that the brush of a single tentacle is enough to induce “Irukandji syndrome.” It sets in twenty to thirty minutes after a sting so minor it leaves no mark, and is often not even felt. Pain is initially focused in the lower back. Soon the entire lumbar region is gripped by debilitating cramps and pounding pain—as if someone is taking a baseball bat to your kidneys. Then comes the nausea and vomiting, which continues every minute or so for around twelve hours. Shooting spasms grip the arms and legs, blood pressure escalates, breathing becomes difficult, and the skin begins to creep, as if worms are burrowing through it. Victims are often gripped with a sense of “impending doom” and in their despair beg their doctors to put them out of their misery.

It’s difficult to know how many victims the Irukandji have claimed. The extreme high blood pressure that often kills is hardly diagnostic. Many deaths have doubtless been put down to stroke, heart attack, or drowning. There is some evidence that the problem is growing: Irukandji have recently been detected in coastal waters from Cape Town to Florida.

The box jellies and Irukandjis are merely the most exotic of a group of organisms that have existed for as long as complex life itself. In Stung! On Jellyfish Blooms and the Future of the Ocean, biologist Lisa-ann Gershwin argues that after half a billion years of quiescence, they’re on the move:

If I offered evidence that jellyfish are displacing penguins in Antarctica—not someday, but now, today—what would you think? If I suggested that jellyfish could crash the world’s fisheries, outcompete the tuna and swordfish, and starve the whales to extinction, would you believe me?

Jellyfish are among the oldest animal fossils ever found. Prior to around 550 million years ago, when a great diversity of marine life sprang into existence, jellyfish may have had the open oceans pretty much to themselves. Today they must share the briny deep with myriad creatures, and with machines. It’s not just the wildlife they’re worrying. In November 2009 a net full of gigantic jellyfish, the largest of which weighed over 450 pounds, capsized a Japanese trawler, throwing the three-man crew into the ocean. But even mightier vessels have been vanquished by jellyfish.

On July 27, 2006, the USS Ronald Reagan, then the most modern aircraft carrier in existence, was docked in the port of Brisbane, Australia. New Zealand had earlier banned the entry of nuclear-powered ships, and many Australians felt it might be prudent to follow their lead. So when the commander of US Naval Air Forces announced that an “acute case of fouling” had afflicted the giant vessel, people took notice. Thousands of jellyfish had been sucked into the cooling system of the ship’s nuclear power plant, forcing the closure of full onboard capabilities. Newspapers ran the headline “Jellyfish Take on US Warship.” Local fire crews were placed on standby, and the citizens of Brisbane held their collective breaths as the battle between the navy and the jellyfish raged. In the end, they proved too formidable, and the ship was forced out of port.

Even nations can be affected by the power of the jellies. On the night of December 10, 1999, 40 million Filipinos suffered a sudden power blackout. President Joseph Estrada was unpopular, and many assumed that a coup was underway. Indeed, news reports around the world carried stories of Estrada’s fall. It was twenty-four hours before the real enemy was recognized: jellyfish. Fifty truckloads of the creatures had been sucked into the cooling system of a major coal-fired power plant, forcing an abrupt shutdown.

Japan’s nuclear power plants have been under attack by jellyfish since the 1960s, with up to 150 tons per day having to be removed from the cooling system of just one power plant. Nor has India been immune. At a nuclear power plant near Madras, workers removed and individually counted over four million jellyfish that had become trapped on screens placed over the entrances to cooling pipes between February and April 1989. That’s around eighty tons of jellyfish.

As Gershwin says, “Jellyfish have an uncanny knack for getting stuck…. Imagine a piece of thin, flexible plastic wrapper in a pool, where it can drift almost forever without sinking, until it gets sucked against the outflow mesh.” Chemical repellents don’t work, nor do electric shocks, or bubble curtains, or acoustic deterrents. In fact even killing the jellyfish won’t work as, dead or alive, they still tend to be sucked in. And everyone from concerned admirals to the owners of power plants that lose millions of dollars with each shutdown have tried very hard to deter them.

Salmon swimming in pens can create a vortex that sucks jellyfish in. Tens of thousands of salmon can be stung to death in minutes, and repeated attacks can kill hundreds of thousands of the valuable fish. But those losses are small compared with the financial devastation jellyfish have inflicted elsewhere. Would you believe, Gershwin asks, that “a mucosy little jellyfish, barely bigger than a chicken egg, with no brain, no backbone, and no eyes, could cripple three national economies and wipe out an entire ecosystem”? That’s just what happened when the Mnemiopsis jellyfish (a kind of comb jelly) invaded the Black Sea. The creatures arrived from the east coast of the US in seawater ballast (seawater a ship takes into its hold once it has discharged its cargo to retain its stability), and by the 1980s they were taking over. Prior to their arrival, Bulgaria, Romania, and Georgia had robust fisheries, with anchovies and sturgeon being important resources. As the jellyfish increased, the anchovies and other valuable fish vanished, and along with them went the sturgeon, the long-beloved source of blini toppings.

By 2002 the total weight of Mnemiopsis in the Black Sea had grown so prodigiously that it was estimated to be ten times greater than the weight of all fish caught throughout the entire world in a year. The Black Sea had become effectively jellified. Nobody knows precisely how or why the jellyfish replaced the valuable fish species, but four hypotheses have been put forward.

The first is that stocks of anchovy, which compete with the jellyfish, collapsed because the jellyfish ate their eggs and young. A second is that jellyfish ate the same food as the anchovies, and starved them. A third is that overfishing left more food for the jellyfish, and the forth is that climate change caused a decline in plankton or promoted a jellyfish bloom. There may be a little truth in all four of these ideas. But one thing is clear. In the end, Mnemiopsis was controlled, and then only partially, by the accidental introduction of another comb jelly. Beroe has tooth-like structures that allow it to eat Mnemiopsis. Only a jellyfish, it seems, can halt a jellyfish invasion.

Link: Quorum Sensing

Bacteria were for a long time believed to exist as individual cells that sought primarily to find nutrients and multiply. The discovery of intercellular communication among bacteria has led to the realization that bacteria are capable of coordinated activity that was once believed to be restricted to multicellular organisms. The capacity to behave collectively as a group has obvious advantages, for example, the ability to migrate to a more suitable environment/better nutrient supply and to adopt new modes of growth, such as sporulation or biofilm formation, which may afford protection from deleterious environments. The “language” used for this intercellular communication is based on small, self-generated signal molecules called autoinducers. Through the use of autoinducers, bacteria can regulate their behavior according to population density. The phenomenon of quorum sensing, or cell-to-cell communication, relies on the principle that when a single bacterium releases autoinducers (AIs) into the environment, their concentration is too low to be detected. However, when sufficient bacteria are present, autoinducer concentrations reach a threshold level that allows the bacteria to sense a critical cell mass and, in response, to activate or repress target genes. Most of the bacteria thus far identified that utilize quorum-sensing systems are associated in some way with plants or animals. The nature of these relationships can be either amicable, as characterized by symbiotic bacteria, or adversarial, as seen with pathogenic bacteria. There are numerous bacteria that have components of a quorum-sensing system for which the phenotype regulated remains an enigma. Similarly, there are bacteria known to regulate a specific phenotype via quorum sensing for which one or more of the regulatory components have thus far eluded identification. 

Link: You're Eye-to-Eye With a Whale in the Ocean. What Does It See?

A deep dive into how the most intelligent creatures in the ocean perceive their world.

There is almost nothing about a whale’s body that we can relate to. They breathe air like we do. They give birth to live young like we do. But the similarities seem to stop there. Their scale, body structure, and environment are all different.

But we do have a point of connection: the eyes. Both humans and whales are mammals, so our eyes are derived from a common ancestor. Not only can we look at whales and they can look back at us, but we know enough about optics to infer their eyes’ capabilities from their anatomy. Animal eyes can be imagined as technological systems evolved with biological materials.

"We will make the fairly bold claim that it is sensible to approach eyes in essentially the same way that an optical engineer might evaluate a new video camera," write Michael Land and Dan-Eric Nilsson, the authors of the Oxford University Press treatment of our topic, Animal Eyes.

Their eyes capture light in ways we can understand. Their eyes have a focal length. Their eyes have a maximum resolution.

So, what does the world look like to a whale?

Here’s what got me pursuing this line of inquiry. The photographer Bryant Austin makes life-size composites of whales: humpbacks, sperm whales, minkes. The results are sublime. Each fin, each ridge in the skin, seems worth pondering. Austin is especially obsessed with photographing their eyes, and with good reason.

To create these images, Austin thought a lot about what kind of visual system could represent the experience of floating next to one of these creatures. Most whale photographers use wide-angle lenses to capture as much of the whale as possible at longer distances, but he realized that wide-angle lenses do not capture enough data to create high-resolution, life-size photographs of whales.

So, on a very fancy Hasselblad H3DII-50, Austin mounted an 80mm portrait lens with a narrow field of view. The consequences of that decision are startling: Austin has to get within ten feet of the whales, and he has to take many photographs from that distance in order to get enough photographs to stitch together the life-size portrait. In practice, that brought him eye-to-eye with these multi-ton animals time and again.

In his new book about his process, out next week, Beautiful Whale, he describes a moment where he came eye-to-eye with a sperm whale named Scar. “I lowered the camera so that our eyes could meet once again, I noticed his eye moving along the length of my body before returning to meet my gaze,” Austin wrote. “As I reflect upon that moment and reconsider the question, ‘What does it feel like [to be so close to whales]?’ the only word that comes to mind is ‘disturbing.’”

Why is it disturbing? Because, as Austin puts it, the whale challenges him “to reevaluate our perceptions of intelligent, conscious life on this planet.” This mammal’s eye—lens, cornea, pupil, retina, photoreceptors and ganglion nerve cells—is a direct passageway into its brain. And when we look at it, Austin can’t help but see an intelligence there, a connection to a brain that, perhaps, works enough like ours for us to understand each other.

… Whales, unlike nocturnal rodents or ourselves, see the world in monochrome. Leo Peichl at the Max Planck Institute for Brain Research co-authored a paper with the nearly tragic title, “For whales and seals the ocean is not blue.” Indeed, the first thing that we can know for sure about how whales see the world is that it exists only in shades of gray. The water we see as blue they would see as black. “They do want to see the background. They want to see animals on the background. And the animals on the background are reflecting light that’s not blue,” Johnsen explained. If we try to imagine what that might look like, Johnsen said perhaps we could picture a grayscale photograph of people wearing fluorescent clothes under a black light.

Link: Bringing Them Back to Life

The revival of an extinct species is no longer a fantasy. But is it a good idea?

On July 30, 2003, a team of Spanish and French scientists reversed time. They brought an animal back from extinction, if only to watch it become extinct again. The animal they revived was a kind of wild goat known as abucardo, or Pyrenean ibex. The bucardo (Capra pyrenaica pyrenaica) was a large, handsome creature, reaching up to 220 pounds and sporting long, gently curved horns. For thousands of years it lived high in the Pyrenees, the mountain range that divides France from Spain, where it clambered along cliffs, nibbling on leaves and stems and enduring harsh winters.

Then came the guns. Hunters drove down the bucardo population over several centuries. In 1989 Spanish scientists did a survey and concluded that there were only a dozen or so individuals left. Ten years later a single bucardo remained: a female nicknamed Celia. A team from the Ordesa and Monte Perdido National Park, led by wildlife veterinarian Alberto Fernández-Arias, caught the animal in a trap, clipped a radio collar around her neck, and released her back into the wild. Nine months later the radio collar let out a long, steady beep: the signal that Celia had died. They found her crushed beneath a fallen tree. With her death, the bucardo became officially extinct.

But Celia’s cells lived on, preserved in labs in Zaragoza and Madrid. Over the next few years a team of reproductive physiologists led by José Folch injected nuclei from those cells into goat eggs emptied of their own DNA, then implanted the eggs in surrogate mothers. After 57 implantations, only seven animals had become pregnant. And of those seven pregnancies, six ended in miscarriages. But one mother—a hybrid between a Spanish ibex and a goat—carried a clone of Celia to term. Folch and his colleagues performed a cesarean section and delivered the 4.5-pound clone. As Fernández-Arias held the newborn bucardo in his arms, he could see that she was struggling to take in air, her tongue jutting grotesquely out of her mouth. Despite the efforts to help her breathe, after a mere ten minutes Celia’s clone died. A necropsy later revealed that one of her lungs had grown a gigantic extra lobe as solid as a piece of liver. There was nothing anyone could have done.

The dodo and the great auk, the thylacine and the Chinese river dolphin, the passenger pigeon and the imperial woodpecker—the bucardo is only one in the long list of animals humans have driven extinct, sometimes deliberately. And with many more species now endangered, the bucardo will have much more company in the years to come. Fernández-Arias belongs to a small but passionate group of researchers who believe that cloning can help reverse that trend.

The notion of bringing vanished species back to life—some call it de-extinction—has hovered at the boundary between reality and science fiction for more than two decades, ever since novelist Michael Crichton unleashed the dinosaurs of Jurassic Park on the world. For most of that time the science of de-extinction has lagged far behind the fantasy. Celia’s clone is the closest that anyone has gotten to true de-extinction. Since witnessing those fleeting minutes of the clone’s life, Fernández-Arias, now the head of the government of Aragon’s Hunting, Fishing and Wetlands department, has been waiting for the moment when science would finally catch up, and humans might gain the ability to bring back an animal they had driven extinct.

“We are at that moment,” he told me.

Link: On Evolution and Inequality

Hunter gatherers may have very egalitarian societies, but evolution says the human love of power and status runs deeper.

When The Spirit Level: Why Equality is Better for Everyone by Richard Wilkinson and Kate Pickett came out in 2009, it chimed well with the post-crash mood. The book claimed that higher levels of inequality were associated with a whole range of poor health issues, including lower life expectancy, increased obesity, and higher murder rates. It seemed that those fat cat bankers hadn’t just wrecked the financial system: they were making us all ill, too.

Subsequently, however, these claims came in for a great deal of criticism, especially from sociologists on the libertarian end of the political spectrum. Whether right or wrong, however, the original book has raised a deeper question, and one that is still wide open. By framing the debate about inequality in a biological context, The Spirit Level harked back to an older philosophical conundrum about human nature. Are we, fundamentally, an egalitarian species or a fiercely competitive one? Or are we perhaps so flexible that we can be equally at home in either kind of society?

Evolutionary biology casts considerable light on this question. Start with the fact that our species has spent more than 90 per cent of its existence living in highly egalitarian bands of hunter-gatherers. There is no room in this nomadic existence for the accumulation of property, and hence no great differences in material possessions. As the American anthropologist Marshall Sahlins observed in his 1968 essay on the ‘original affluent society’:

Of the hunter it is truly said that his wealth is a burden. In his condition of life, goods can become ‘grievously oppressive’ … and the more so the longer they are carried around. Certain food collectors do have canoes and a few have dog sleds, but most must carry themselves all the comforts they possess, and so only possess what they can comfortably carry themselves.

It was only when the first humans started farming, around 10,000 years ago, that it became possible for one person to accumulate many more possessions than another. Farmers are sedentary and can therefore store property in buildings, and stake a claim to land by building walls. Farming is also more efficient than hunting and gathering, so a division of labour can develop. Some grow enough food to support other people who have nothing to do with food production, such as artisans, soldiers, priests and kings. Inevitably, those who do not produce food end up far richer than those who do. Kings skim off the surplus production in the form of taxes and use it to finance armies, palaces and temples. Priests spin yarns about tithing to justify all this robbery in exchange for an income of their own. In just a few thousand years — a blink of an eye in evolutionary terms — humans have gone from living in small egalitarian bands to large-scale sedentary societies with extreme levels of inequality.

It would hardly be surprising then if the sudden appearance of inequality didn’t have deleterious consequences for the human mind and body. Other novelties associated with the advent of farming, such as the constant proximity of domestic animals and higher population density, exposed our ancestors to new threats for which they were unprepared, such as the rise of infectious diseases. Evolutionary psychologists have speculated that our ancestors found the new landscape of social inequality similarly damaging, and that there has not yet been enough time for natural selection to adapt us to it, if it ever will.

According to the social competition hypothesis of depression, humans are exquisitely sensitive to small differences in social status. Such sensitivity was vital when our ancestors lived in smaller bands of hunter-gatherers, where status differences were relatively slight. But in today’s world, where the global elite earn thousands of times more than those at the bottom of the economic heap and have completely different lifestyles, our status detectors go into overdrive. Hence a sensitivity that evolved to help low-status individuals signal obedience would, in today’s world, produce pathological results.

Support for this idea is provided by studies of dominance hierarchies in other primates. Low-ranking vervet monkeys, for example, have serotonin levels that are half those of the alpha males, and low-status yellow baboons have elevated levels of the stress hormone cortisol. Both of these physiological responses are found in depressed people, so perhaps inequality does literally get under our skin. A study of British civil servants found that those in lower-grade jobs showed significantly higher levels of the cortisol-awakening response (the difference between cortisol levels at waking and 30 minutes later, which is thought to be linked to the hippocampus’s preparation to face anticipated stress) than those in higher grades. Contrary to popular belief, then, it seems that those at the top of the pyramid, who tend to have the most decision-making responsibility, have the least stressful lives. One theory is that, the lower one is in the chain of command, the less control one has over one’s daily life. Taking orders, rather than giving them, results in raised heart rate, stress hormones, and blood pressure.

Inequality is not a negative-sum game — in which everybody ends up worse off — but a zero-sum game, in which the poorer health of those at the bottom of the pile is offset by the health gains of those at the top. There is nothing like the sight of a beggar to make one feel rich. It is not enough to succeed, as Gore Vidal said; others must fail.

Evolutionary psychologists have also looked to experimental psychology for evidence that we are naturally averse to inequality. In the ultimatum game, for example, two strangers are paired and given a sum of money. One of them — usually referred to as the ‘proposer’ — has to decide how to divide the money. The proposer might suggest a 50-50 split, or they might offer only 10 per cent and keep the lion’s share. The other player can then either accept or reject this offer. If the responder accepts the offer, each player walks away with the share suggested by the proposer. If the responder rejects the offer, each player walks away with nothing.

According to game theory, a rational proposer should always offer the smallest amount possible, and a rational responder should always accept the proposer’s offer, no matter how small it is. After all, some money is better than none. But this isn’t what people actually do when they play this game. Instead of offering the smallest possible amount, most proposers offer between 40 and 50 per cent of the money. And on the few occasions that proposers offer less than 20 per cent, responders reject about half of those offers, despite the fact that this means both lose.

Such findings have been interpreted as evidence that people naturally dislike inequality and will sacrifice some personal gains to avoid it. However, when the experiment has been carried out with indigenous people with a low degree of market integration, the results are very different. Machiguenga farmers in Peru, for example, offer very little, and accept almost every offer, no matter how derisory. In the cultures least exposed to the influence of capitalism, people behave almost as greedily as game theory suggests they should. This does not bode well for the idea that inequality aversion is part of our DNA.

Link: Robert Sapolsky: How Parasites Affect Human and Animal Behavior

The parasite my lab is beginning to focus on is one in the world of mammals, where parasites are changing mammalian behavior. It’s got to do with this parasite, this protozoan called Toxoplasma. If you’re ever pregnant, if you’re ever around anyone who’s pregnant, you know you immediately get skittish about cat feces, cat bedding, cat everything, because it could carry Toxo. And you do not want to get Toxoplasma into a fetal nervous system. It’s a disaster.

In the endless sort of struggle that neurobiologists have — in terms of free will, determinism — my feeling has always been that there’s not a whole lot of free will out there, and if there is, it’s in the least interesting places and getting more sparse all the time. But there’s a whole new realm of neuroscience which I’ve been thinking about, which I’m starting to do research on, that throws in another element of things going on below the surface affecting our behavior. And it’s got to do with this utterly bizarre world of parasites manipulating our behavior. It turns out that this is not all that surprising. There are all sorts of parasites out there that get into some organism, and what they need to do is parasitize the organism and increase the likelihood that they, the parasite, will be fruitful and multiply, and in some cases they can manipulate the behavior of the host.

Some of these are pretty astounding. There’s this barnacle that rides on the back of some crab and is able to inject estrogenic hormones into the crab if the crab is male, and at that point, the male’s behavior becomes feminized. The male crab digs a hole in the sand for his eggs, except he has no eggs, but the barnacle sure does, and has just gotten this guy to build a nest for him. There are other ones where wasps parasitize caterpillars and get them to defend the wasp’s nests for them. These are extraordinary examples.

The parasite my lab is beginning to focus on is one in the world of mammals, where parasites are changing mammalian behavior. It’s got to do with this parasite, this protozoan called Toxoplasma. If you’re ever pregnant, if you’re ever around anyone who’s pregnant, you know you immediately get skittish about cat feces, cat bedding, cat everything, because it could carry Toxo. And you do not want to get Toxoplasma into a fetal nervous system. It’s a disaster.

The normal life cycle for Toxo is one of these amazing bits of natural history. Toxo can only reproduce sexually in the gut of a cat. It comes out in the cat feces, feces get eaten by rodents. And Toxo’s evolutionary challenge at that point is to figure out how to get rodents inside cats’ stomachs. Now it could have done this in really unsubtle ways, such as cripple the rodent or some such thing. Toxo instead has developed this amazing capacity to alter innate behavior in rodents.

If you take a lab rat who is 5,000 generations into being a lab rat, since the ancestor actually ran around in the real world, and you put some cat urine in one corner of their cage, they’re going to move to the other side. Completely innate, hard-wired reaction to the smell of cats, the cat pheromones. But take a Toxo-infected rodent, and they’re no longer afraid of the smell of cats. In fact they become attracted to it. The most damn amazing thing you can ever see, Toxo knows how to make cat urine smell attractive to rats. And rats go and check it out and that rat is now much more likely to wind up in the cat’s stomach. Toxo’s circle of life completed.

This was reported by a group in the UK about half a dozen years ago. Not a whole lot was known about what Toxo was doing in the brain, so ever since, part of my lab has been trying to figure out the neurobiological aspects. The first thing is that it’s for real. The rodents, rats, mice, really do become attracted to cat urine when they’ve been infected with Toxo. And you might say, okay, well, this is a rodent doing just all sorts of screwy stuff because it’s got this parasite turning its brain into Swiss cheese or something. It’s just non-specific behavioral chaos. But no, these are incredibly normal animals. Their olfaction is normal, their social behavior is normal, their learning and memory is normal. All of that. It’s not just a generically screwy animal.

You say, okay well, it’s not that, but Toxo seems to know how to destroy fear and anxiety circuits. But it’s not that, either. Because these are rats who are still innately afraid of bright lights. They’re nocturnal animals. They’re afraid of big, open spaces. You can condition them to be afraid of novel things. The system works perfectly well there. Somehow Toxo can laser out this one fear pathway, this aversion to predator odors.

We started looking at this. The first thing we did was introduce Toxo into a rat and it took about six weeks for it to migrate from its gut up into its nervous system. And at that point, we looked to see, where has it gone in the brain? It formed cysts, sort of latent, encapsulated cysts, and it wound up all over the brain. That was deeply disappointing.

But then we looked at how much winds up in different areas in the brain, and it turned out Toxo preferentially knows how to home in on the part of the brain that is all about fear and anxiety, a brain region called the amygdala. The amygdala is where you do your fear conditioning; the amygdala is what’s hyperactive in people with post-traumatic stress disorder; the amygdala is all about pathways of predator aversion, and Toxo knows how to get in there.

Next, we then saw that Toxo would take the dendrites, the branch and cables that neurons have to connect to each other, and shriveled them up in the amygdala. It was disconnecting circuits. You wind up with fewer cells there. This is a parasite that is unwiring this stuff in the critical part of the brain for fear and anxiety. That’s really interesting. That doesn’t tell us a thing about why only its predator aversion has been knocked outwhereas fear of bright lights, et cetera, is still in there. It knows how to find that particular circuitry.

So what’s going on from there? What’s it doing? Because it’s not just destroying this fear aversive response, it’s creating something new. It’s creating an attraction to the cat urine. And here is where this gets utterly bizarre. You look at circuitry in the brain, and there’s a reasonably well-characterized circuit that activates neurons which become metabolically active circuits where they’re talking to each other, a reasonably well-understood process that’s involved in predator aversion. It involves neurons in the amygdala, the hypothalamus, and some other brain regions getting excited. This is a very well characterized circuit.

Link: Stem Cells and Same Sex Reproduction

Stem cells have generated such an enormous amount of interest, in part, because of their applications related to areas such as fertility and genetics. In that same light, their interest for solving reproductive challenges has also generated a great deal of controversy. This is particularly true in the application of stem cells to facilitate reproduction for gay couples.

At present, there are a number of research laboratories that are focused on the creation of cells that are genetically male but have been produced from eggs. Alternately, they are also trying to create sperm from female eggs. If the research proves to work, the consequences are particularly important for gay and lesbian couples that wish to have children. The idea is, however, an extremely controversial one that mixes in with politics, religion and ethics. Many individuals oppose same-sex reproduction while gay and lesbian couples - as well as heterosexual members of the public - argue that gay persons should have the right to produce and raise biological children if the opportunity becomes available.

The techniques purported to allow same-sex reproduction have yet to be successful but they do hold promise. They include methods of cellular reprogramming and even techniques such as artificial chromosomes. While they have not been shown to work at present, they do hold potential for the future of same-sex reproduction. One particular technique involves the creation of sperm from human stem cells. In a recent experiment, bone marrow stem cells were extracted from men and they were then triggered into spermatogonia. These cells are able to develop into immature sperm cells. The experiment was widely reported in the news but has not yet been published or successfully replicated.

In another experiment, spermatogonia were triggered to begin meiosis after being cultured with cells known as Sertoli cells. These cells are found in the testes and are important because they support developing sperm. While the research team for this particular experiment has yet to obtain these kinds of results with the production of eggs, a team in Brazil does cite that they have created sperm and eggs from embryonic stem cells. Whether or not the eggs can actually produce viable offspring, however, is the most vital aspect of this type of experimentation. Still, the work does still show that potential for same-sex reproduction exists, and it will likely spur further research in this area.

Link: The Behavioral Sink

How do you design a utopia? In 1972, John B. Calhoun detailed the specifications of his Mortality-Inhibiting Environment for Mice: a practical utopia built in the laboratory. Every aspect of Universe 25—as this particular model was called—was pitched to cater for the well-being of its rodent residents and increase their lifespan. The Universe took the form of a tank, 101 inches square, enclosed by walls 54 inches high. The first 37 inches of wall was structured so the mice could climb up, but they were prevented from escaping by 17 inches of bare wall above. Each wall had sixteen vertical mesh tunnels—call them stairwells—soldered to it. Four horizontal corridors opened off each stairwell, each leading to four nesting boxes. That means 256 boxes in total, each capable of housing fifteen mice. There was abundant clean food, water, and nesting material. The Universe was cleaned every four to eight weeks. There were no predators, the temperature was kept at a steady 68°F, and the mice were a disease-free elite selected from the National Institutes of Health’s breeding colony. Heaven.

Four breeding pairs of mice were moved in on day one. After 104 days of upheaval as they familiarized themselves with their new world, they started to reproduce. In their fully catered paradise, the population increased exponentially, doubling every fifty-five days. Those were the good times, as the mice feasted on the fruited plain. To its members, the mouse civilization of Universe 25 must have seemed prosperous indeed. But its downfall was already certain—not just stagnation, but total and inevitable destruction.

Calhoun’s concern was the problem of abundance: overpopulation. As the name Universe 25 suggests, it was not the first time Calhoun had built a world for rodents. He had been building utopian environments for rats and mice since the 1940s, with thoroughly consistent results. Heaven always turned into hell. They were a warning, made in a postwar society already rife with alarm over the soaring population of the United States and the world. Pioneering ecologists such as William Vogt and Fairfield Osborn were cautioning that the growing population was putting pressure on food and other natural resources as early as 1948, and both published bestsellers on the subject. The issue made the cover of Time magazine in January 1960. In 1968, Paul Ehrlich published The Population Bomb, an alarmist work suggesting that the overcrowded world was about to be swept by famine and resource wars. After Ehrlich appeared on The Tonight Show with Johnny Carson in 1970, his book became a phenomenal success. By 1972, the issue reached its mainstream peak with the report of the Rockefeller Commission on US Population, which recommended that population growth be slowed or even reversed.

But Calhoun’s work was different. Vogt, Ehrlich, and the others were neo-Malthusians, arguing that population growth would cause our demise by exhausting our natural resources, leading to starvation and conflict. But there was no scarcity of food and water in Calhoun’s universe. The only thing that was in short supply was space. This was, after all, “heaven”—a title Calhoun deliberately used with pitch-black irony. The point was that crowding itself could destroy a society before famine even got a chance. In Calhoun’s heaven, hell was other mice.

(Source: sunrec)

Link: "Biological Intelligence is a Fleeting Phase in the Evolution of the Universe"

During an epoch of dramatic climate change 200,000 years ago, Homo sapiens (modern humans) evolved in Africa. Several leading scientists are asking: Is the human species entering a new evolutionary, post-biological inflection point?

Paul Davies, a British-born theoretical physicist, cosmologist, astrobiologist and Director of the Beyond Center for Fundamental Concepts in Science and Co-Director of the Cosmology Initiative at Arizona State University, says in his new book The Eerie Silence that any aliens exploring the universe will be AI-empowered machines. Not only are machines better able to endure extended exposure to the conditions of space, but they have the potential to develop intelligence far beyond the capacity of the human brain.

"I think it very likely – in fact inevitable – that biological intelligence is only a transitory phenomenon, a fleeting phase in the evolution of the universe," Davies writes. "If we ever encounter extraterrestrial intelligence, I believe it is overwhelmingly likely to be post-biological in nature."

In the current search for advanced extraterrestrial life SETI experts say the odds favor detecting alien AI rather than biological life because the time between aliens developing radio technology and artificial intelligence would be brief.  

“If we build a machine with the intellectual capability of one human, then within 5 years, its successor is more intelligent than all humanity combined,” says Seth Shostak, SETI chief astronomer. “Once any society invents the technology that could put them in touch with the cosmos, they are at most only a few hundred years away from changing their own paradigm of sentience to artificial intelligence,” he says.

ET machines would be infinitely more intelligent and durable than the biological intelligence that created them. Intelligent machines would be immortal, and would not need to exist in the carbon-friendly “Goldilocks Zones” current SETI searches focus on. An AI could self-direct its own evolution, each “upgrade” would be created with the sum total of its predecessor’s knowledge preloaded.

"I think we could spend at least a few percent of our time… looking in the directions that are maybe not the most attractive in terms of biological intelligence but maybe where sentient machines are hanging out." Shostak thinks SETI ought to consider expanding its search to the energy- and matter-rich neighborhoods of hot stars, black holes and neutron stars. 

Before the year 2020, scientists are expected to launch intelligent space robots that will venture out to explore the universe for us.

"Robotic exploration probably will always be the trail blazer for human exploration of far space," says Wolfgang Fink, physicist and researcher at Caltech. "We haven’t yet landed a human being on Mars but we have a robot there now. In that sense, it’s much easier to send a robotic explorer. When you can take the human out of the loop, that is becoming very exciting."

As the growing global population continues to increase the burden on the Earth’s natural resources, senior curator at the Smithsonian National Air and Space Museum, Roger Launius, thinks that we’ll have to alter human biology to prepare to colonize space. 

Launius  looks at the historical debate surrounding human colonization of the solar system. Experiments have shown that certain life forms can survive in space. Recently, British scientists found that bacteria living on rocks taken from Britain’s Beer village were able to survive 553 days in space, on the exterior of the International Space Station (ISS). The microbes returned to Earth alive, proving they could withstand the harsh environment. 

Humans, on the other hand, are unable to survive beyond about a minute and a half in space without significant technological assistance. Other than some quick trips to the moon and the ISS, astronauts haven’t spent too much time too far away from Earth. Scientists don’t know enough yet about the dangers of long-distance space travel on human biological systems. A one-way trip to Mars, for example, would take approximately six months. That means astronauts will be in deep space for more than a year with potentially life-threatening consequences.

Launius, who calls himself a cyborg for using medical equipment to enhance his own life, says the difficult question is knowing where to draw the line in transforming human biological systems to adapt to space.

Link: Brains Plus Brawn

"Dark Matter" by Alexander Semenov

Many marine species can’t be photographed underwater for a variety of different reasons. Some animals are too small, some spend their life burrowed in the seafloor, and some live in the dark depths where nobody can dive. At our station, we collect specimens using different methods and as a result are able to make photos and then show a wide range of animals, which we haven’t previously seen in their natural environment. You can see some of them here in this project, and also it contains photos of some more common, yet very beautiful White Sea inhabitants.

Link: State of the Species

Does success spell doom for Homo sapiens?

The problem with environmentalists, Lynn Margulis used to say, is that they think conservation has something to do with biological reality. A researcher who specialized in cells and microorganisms, Margulis was one of the most important biologists in the last half century—she literally helped to reorder the tree of life, convincing her colleagues that it did not consist of two kingdoms (plants and animals), but five or even six (plants, animals, fungi, protists, and two types of bacteria).

Until Margulis’s death last year, she lived in my town, and I would bump into her on the street from time to time. She knew I was interested in ecology, and she liked to needle me. Hey, Charles,she would call out, are you still all worked up about protecting endangered species?

Margulis was no apologist for unthinking destruction. Still, she couldn’t help regarding conservationists’ preoccupation with the fate of birds, mammals, and plants as evidence of their ignorance about the greatest source of evolutionary creativity: the microworld of bacteria, fungi, and protists. More than 90 percent of the living matter on earth consists of microorganisms and viruses, she liked to point out. Heck, the number of bacterial cells in our body is ten times more than the number of human cells!

Bacteria and protists can do things undreamed of by clumsy mammals like us: form giant supercolonies, reproduce either asexually or by swapping genes with others, routinely incorporate DNA from entirely unrelated species, merge into symbiotic beings—the list is as endless as it is amazing. Microorganisms have changed the face of the earth, crumbling stone and even giving rise to the oxygen we breathe. Compared to this power and diversity, Margulis liked to tell me, pandas and polar bears were biological epiphenomena—interesting and fun, perhaps, but not actuallysignificant.

Does that apply to human beings, too? I once asked her, feeling like someone whining to Copernicus about why he couldn’t move the earth a little closer to the center of the universe. Aren’t we specialat all?

This was just chitchat on the street, so I didn’t write anything down. But as I recall it, she answered that Homo sapiens actually might be interesting—for a mammal, anyway. For one thing, she said, we’re unusually successful.

Seeing my face brighten, she added: Of course, the fate of every successful species is to wipe itself out.

Why and how did humankind become “unusually successful”? And what, to an evolutionary biologist, does “success” mean, if self-destruction is part of the definition? Does that self-destruction include the rest of the biosphere? What are human beings in the grand scheme of things anyway, and where are we headed? What is human nature, if there is such a thing, and how did we acquire it? What does that nature portend for our interactions with the environment? With 7 billion of us crowding the planet, it’s hard to imagine more vital questions.

One way to begin answering them came to Mark Stoneking in 1999, when he received a notice from his son’s school warning of a potential lice outbreak in the classroom.

Link: WNYC's Radiolab: Argentine Invasion

Podcast (20 minutes): From a suburban sidewalk in southern California, Jad and Robert witness the carnage of a gruesome turf war. Though the tiny warriors doing battle clock in at just a fraction of an inch, they have evolved a surprising, successful, and rather unsettling strategy of ironclad loyalty, absolute intolerance, and brutal violence.

David Holway, an ecologist and evolutionary biologist from UC San Diego, takes us to a driveway in Escondido, California where a grisly battle rages. In this quiet suburban spot, two groups of ants are putting on a chilling display of dismemberment and death. According to David, this battle line marks the edge of an enormous super-colony of Argentine ants. Think of that anthill in your backyard, and stretch it out across five continents.

Argentine ants are not good neighbors. When they meet ants from another colony, any other colony, they fight to the death, and tear the other ants to pieces. While other kinds of ants sometimes take slaves or even have sex with ants from different colonies, the Argentine ants don’t fool around. If you’re not part of the colony, you’re dead.

According to evolutionary biologist Neil Tsutsui and ecologist Mark Moffett, the flood plains of northern Argentina offer a clue as to how these ants came to dominate the planet. Because of the frequent flooding, the homeland of Linepithema humile is basically a bootcamp for badass ants. One day, a couple ants from one of these families of Argentine ants made their way onto a boat and landed in New Orleans in the late 1800s. Over the last century, these Argentine ants wreaked havoc across the southern U.S. and a significant chunk of coastal California.

In fact, Melissa Thomas, an Australian entomologist, reveals that these Argentine ants are even more well-heeled than we expected - they’ve made to every continent except Antarctica. No matter how many thousands of miles separate individual ants, when researchers place two of them together - whether they’re plucked from Australia, Japan, Hawaii … even Easter Island - they recognize each other as belonging to the same super-colony.

But the really mind-blowing thing about these little guys is the surprising success of their us-versus-them death-dealing. Jad and Robert wrestle with what to make of this ant regime, whether it will last, and what, if anything, it might mean for other warlike organisms with global ambitions.

Nothing is easier than to admit in words the truth of the universal struggle for life, or more difficult—at least I have found it so—than constantly to bear this conclusion in mind… We behold the face of nature bright with gladness…We do not see, or we forget, that the birds which are idly singing round us mostly live on insects and seeds, and are thus constantly destroying life.
— Charles Darwin, The Origin of Species